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ABSTRACT

Motivation: The understanding of the molecular sources for diseases
like cancer can be significantly improved by computational models.
Recently, Boolean networks have become very popular for modeling
signaling and regulatory networks. However, such models rely
on a set of Boolean functions which are in general not known.
Unfortunately, while detailed information on the molecular interactions
becomes available in large scale through electronic databases, the
information on the Boolean functions does not become available
simultaneously and has to be included manually into the models, if
at all known.

Results: We propose a new Boolean approach which can directly
utilize the mechanistic network information available through modern
databases. The Boolean function is implicitly defined by the reaction
mechanisms. Special care has been taken for the treatment of kinetic
features like inhibition. The method has been applied to a signaling
model combining the Wnt and MAPK pathway.

Availability: A sample C++ implementation of the proposed
method is available for Linux and compatible systems through
http://code.google.com/p/libscopes/wiki/Paper2011

Contact: handorf@physik.hu-berlin.de

1 INTRODUCTION

Wolf, 2010). Such models usually yield high quality predictions of
the system dynamics with quantitative information on the molecule
concentrations. Those models, however, require accurate kinetic
parameters.

The emergence of large scale electronic databases like KEGG
(Kanehisaet al., 2010), Reactome (Matthewe al., 2009) or the
Pathway Interaction Database (PID)(Schaefeal., 2009) opened
new directions in modeling biological networks. For large models it
is often unfeasible to obtain all the necessary kinetic parameters. In
such cases so called structural methods are applied. These include
elementary flux modes (Schuster and Hilgetag, 1994; Schetster
2000), flux balance analysis (Bonarigsal., 1997; Edwards and
Palsson, 2000) and Petri nets (Red#lyal., 1996; Genrichet al.,
2001).

A further structural method which became very popular in
particular for signaling and gene-regulatory networks are Boolean
networks (Kauffman, 1969, 1986; de Jong, 2002; Handodl.,
2005; Fisher and Henzinger, 2007; Saez-Rodrigeteal., 2009;
Samagaet al., 2009). In a Boolean network, each compound is
represented by a network node and has an associated Boolean value.
This value either represents the existence of a compound, i.e. it is
TRUE if the compound is present in a significant concentration and
FALSE if not, or it represents the activity. In the network, nodes are
connected by edges which represent biochemical interactions. The
Boolean value of a node is calculated in each step of the algorithm

An important focus in Systems biology are emergent propertie§hrough a Boolean function which depends on the Boolean values
of biological systems, properties which arise from the system agy 41| inbound nodes.

a whole and which cannot be explained by looking at individual
components alone. A common theme in this evolving field ar

Usually, while the topology of the network is known (e.g. from

€interaction databases or qualitative interaction studies), the Boolean

biological networks which describe complex relations betweerynction is unclear. One approach is to estimate this function
biological entities. Modeling these networks uncovers the systemBy adapting the model to experimental data as shown in Saez-
behavior as a whole based on the properties and interactions of th@odriguezet al. (2009). In Handorfet al. (2005) we introduced

contained compounds.

a different Boolean approach for metabolic networks, the concept

An important subset of such networks describes mechanistig Scopes, which circumvents this problem. Here, a (metabolic)

processes among biochemical species. Such processes play @jction is active if all of its substrates are present (TRUE).

important role in cellular metabolism, signal transductions and 9en&hsequently all compounds becoffRUE for which at least one
regulation. Computational models of these networks have beep,qycing reaction is active. Hence, the Boolean function is clearly

investigated for a long time. A first category of models concentratgyafined by the topology and is represented by the conjunction
on single pathways, i.e. functionally related parts of the networks(AND) of all substrates of a reaction.

with the use of differential _equation§ (Rapoperd!., 19_74; Rizzi In signaling and gene-regulatory networks the situation is more
etal., 1997; Wolf and Heinrich, 2000; Teusiekal., 2000; Heinrich  compjex In fact, there exist different views on these networks.

etal., 2002; Schoebest al., 2002; Zi and Klipp, 2007; Kofahl and - A" phenomenological view (Figure 1a) represents experimental
findings, like A and C activate and B and D inactivate protein E. This
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a) B b) reactions. This holds in particular for inhibition which in the fully
mechanistic view is only indirectly included (inhibition occurs due
Q to competition for the same substrate, see methods).

This is in contrast to manually built classical Boolean networks
a which are derived from experimental observations and therefore

naturally include inhibitory effects. By including phenomenological
data, the classical Boolean networks are actually not purely
topological anymore. Including an inhibitory interaction already
assumes that the compound concentrations or the kinetic properties
of the participating reactions are in certain suitable ranges. The
fully mechanistic view however does not contain implicit kinetic
information. Hence, this type of information has to be added to the
automatically created network as discussed in the methods section.
The proposed Boolean approach has been applied to a signaling
and gene-regulatory network describing the interaction between
the Wnt pathway and the MAP kinase cascade. The targets of
the two pathways,3-catenin and ERK, are known initiators for
differentiation and proliferation and are also of great interest in
diseases like cancer. In Kirgt al. (2007) a model of these two
interacting pathways has been published. It includes crosstalk at the
signaling and gene-regulatory level.
Our model could reproduce their findings. We also manually
implemented a classical Boolean network using CellNetAnalyzer
(Klamt et al., 2007) and compared it to our model.

Fig. 1. Different representations of signaling or regulatory gsses: The
three views shall represent the same mechanistic procesetwadrik of
activating and inactivating proteins. b) intermediate espntation with
reactions. c) fully mechanistic representation, the doittédbition arrows
represent additional markings which carry the informationirgmibitions.
(*) denote active proteins and (I) inactivated proteins )nabnd c). The
different views roughly equal the SBGN Activity Flow (a) al@BGN 2 APPROACH
Process Description (c) (Novetal., 2009). We implemented the network model of crosstalk between the Wnt
and MAPK pathways presented in Kigt al. (2007), as shown in
Figure 2. To this end, we imported the reactions from the Reactome
view, which is similar to the SBGNActivity Flow (Novre et al.,  database (see supplemental section S4). The imported network was
2009), is used for classical Boolean models as indicated above aridrther refined to match the model of Kiet al. as not all utilized
requires a Boolean function which converts the states of the proteingactions are in the database, yet. It should be noted that this is not
Ao D into the state of protein E. a mandatory step in general. The method described here is able to
Clearly, there exist molecular mechanisms behind the experimentitectly use the data from the database if the contained information
observations which can be described by biochemical reactions. Already sufficiently describes the analyzed system.
view which is particularly popular in differential equation models is  Furthermore, kinetic features of the system, like inhibition, have
shown in Figure 1b where reactions have substrates and products ggen identified and included into the model as described in the
in metabolic network but can also be influenced by a set of activatorgnethod section.
or inhibitors. In the refined model, the crosstalk between the WNT and MAPK
However, this view is still not fully mechanistic. Reactions are pathways is represented through, first, an unknown protein X
never directly activated or inhibited by a compound. The only agentvhich is transcribed in response to the transcription fagter
that effects the reaction rate is the catalyst. Other modifications argatenin and which activates cRaf upstream of ERK, second, an
indirect by influencing the activities of the substrates or the catalysinhibition of GSK33 by active ERK which in turn inhibits the
(Figure 1c). Within this fully mechanistic view, which is similar to destruction complex of-catenin in the Wnt pathway and third, a
the SBGN Process Description, the Boolean function is again cleagirect stimulation of RAS by the Wnt signal. The known inhibitory
Its a conjunction (AND) of all substrates and the catalyst. interactions in the pathways were incorporated as mentioned before.
This type of mechanistic network information can be retrievedThe supplemental Figure S6 shows the complete network.
from modern databases like Reactome or PID. With the present |n order to compare the result of our scopes method to the result of
method we are able to automatically create a functional Booleathe classical Boolean approach, we manually built an activity flow
network model including the Boolean function for signaling or model of the participating species. This model (shown in Figure 3)
gene-regulatory pathways. is much less complex than the model created from the databases
Simulation of the resulting Boolean model allows to explore since it omits many mechanistic details and requires the manual
potential qualitative behavior of the network upon stimulation. definition of the network logic. Model simulations were performed
Obviously, such a Boolean network cannot reproduce behaviogsing synchronous Boolean simulation in the "odefy” module of
which results from the kinetics of the participating biochemical CellNetAnalyzer.
In a first step we investigated the effect of the Wnt stimulus on the
1 systems Biology Graphical Notation two target proteins ERK anf-catenin for the MAPK and the Wnt
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RAS/GDP — RAS/GTP X B-

cRAF — cRAF*

MEK — MEK-PP
ERK — ERK-PP ——®
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catenin/TCF <— 3-catenin + TCF

%‘ B-catenin/GSK3/APC/AXIN

!

GSKp3 + AXIN + APC — GSK3/AXIN/APC

B-catenin degradation

Fig. 2. Crosstalk of the Wnt and Erk pathways. Modified from Kétral.. Crosstalk is represented through, first, an unknown profeivhich is transcribed
in response to the transcription fact@catenin and which activates cRaf upstream of ERK, secaméhtabition of GSK33 by active ERK which in turn
inhibits the destruction complex gfcatenin in the Wnt pathway and third, a direct stimulation 88y the Wnt signal.

pathway. Figure 4 shows similar behavior for our method and the
classical Boolean approach as provided by CellNetAnalyzer. Before
the Wnt stimulus is applied the system is usually assumed to be off

in the absence of crosstalk. The positive feedback loop introduce
with the crosstalk, however, leads to a periodic activity of the two
target proteins in both models. Once the Wnt stimulus is applied
both, ERK ands-catenin become continuously active. If the Wnt

stimulus is removed (not shown for CellNetAnalyzer) both proteins
stay active which is again due to the positive feedback loop.

We performed an attractor analysis for both models which yielded

results consistent with the above observations. Please see section
in the supplement for further details.
Kim et al. reported similar results using a model of differential
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equations. The effect of the fe.edbacl.< loop is actually depen.dergig' 4. Response of-catenin and ERK to WNT stimulusupper) results
on the kinetic parameters and in particular on whether the signal, the scope method:Idwer) results for CellNetAnalyzer. Here, time

Fig. 3. Activity flow diagram of the Wnt and MAPK pathway and their
crosstalk. The Boolean functions have been defined manualyder to
reproduce the known behavior of the components. Logicalaipes have
been indicated in the Figure if they were not clear from thgotogy alone.

denotes the step number of the Boolean simulation which is sineab time
which can roughly considered as a monotonous function ofdhktime

through the crosstalk is strong enough for sustained activation. For a
standard parameter set they reported that the activity stayed in a low
state without the stimulus, switched to active with the stimulus and
returned to the low state after the removal of the stimulus. However,
by varying the synthesis rate Gfcatenin or the phosphatase activity
for ERK, the system showed an increased activity already before
the stimulus and a sustained activity after stimulus removal. This
parameter dependent distinction cannot be made with the Boolean
approaches.

At that point it should be noted that the oscillations in the off-
state observed in the Boolean systems are artifacts of the Boolean
formalism. In fact, in a differential equation model they would
not correspond to a stable limit cycle. It is a mere expression
of that an initial activation in the cycle is passed around without
being attenuated or amplified. Differential equation models could
show oscillations of this type transiently, in particular if the initial
activation time is shorter than the round-trip time.
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Brcatenin a step-wise algorithm. Initially a set of seed compounds isnddfiwhich

is the set of initially available compounds. In each follogstep all active
reactions are determined by testing whether all substrétas eaction are
available. Then, all products of the active reactions adeddo the set of
available compounds. This process yields a set of compouhdss¢tope)
that are synthesizable from the seed compounds.

Here we adapt the concept to signaling networks. The clgglés to
include the effects of catalysts, activators and inhilsitoAs discussed
before, in the fully mechanistic view, towards which modernatases
evolve, actually only catalysts remain. This can be incluitethe method
by simply requiring the availability of all substrates ane ttatalyst for the
execution of a reaction. We call this tBitic mode of our method which is
equivalent to the previously defined Scopes.

Clearly, in signaling and gene-regulatory networks, dymameffects,
and in particular inhibition, are especially important floe cellular functions
of these networks. As argued before, in the fully mechanigtie, inhibition
is indirect. It occurs due to reactions where an inhibitotalyaes a
modification of a compound, thereby leading to a depletion efdhtive
form of the compound. To distinguish inhibiting reactionsnfr other non-
inhibiting reactions which use the same compound as subsaratehibitory
flag has to be set to mark that the reaction is inhibitory to aifipesubstrate.

As an example we consider the reactiéh + B* — A’ B* from Figure
1c which depletesA* and thereby inactivates it. This effect is described
by an "inhibition flag” to these reactions which is visuatizey tee-shaped
arrows in Figures 1c and S6(supplement). This flag essentiakcribes
kinetic information. It means that for example in case of Midisa®lenten

. o . kinetics the K,,,-value is sufficiently low and thé ™%*-value is high
Kim et al. argued that the activating potential of the reported gnough to cause a low enough concentratior bisuch that other reactions
feedback loop may be important in particular in cancer, indicatinggepending omi* are not significantly activated.

that a slight variation of the kinetic rates may result in a Forthedynamic mode of the method this flag is used to include inhibitory
persistent activation of the proliferation related Wnt and MAPK effects into the Boolean network approach. Therefore, veigasto each
pathways even in the absences of the corresponding stimuli. Thegompound node two Boolean variables, one indicating theeps of
further examined their model by a set of interference experiment§ie compound (as in the classical approach) and the secoruating its
which they experimentally validated. Firs§-catenin has been depletion. _ o o
overexpressed{3-cat), second, active ERK levels have been We further support the second paradigm of inhibition, thiectiinhibition

activity

activity

Fig. 5. Response ofg-catenin [eft) and ERK (¢ight) to the different
interferences [f-catenin overexpression +§-cat), ERK-phosphatase
inhibition with okadaic acid@A), GSK-33 inhibition with SB216763 $B)
and both E8B+0OA)). The (upper) graph shows the results for the scope
method, the lpwer) for CellNetAnalyzer. The different curves have been
shifted slightly to avoid overlap.

increased by phosphatase inhibition using okadaic &g (third,
GSK338 has been inhibited by SB216763K), and fourth, the
effect of ERK activation and GSKBinhibition has been studied
in combination EB+0A).

of a reaction by an inhibitor (cf. Figure 1b). Although daiabs like
Reactome encourage their curators to use the fully mechanigw, if
known, this paradigm will still be around for the next time. eThctivity
flow scheme (cf. Figure 1a) is not supported as this is peyfecered by
classic Boolean approaches.

We repeated the experiments using our method and compared Apart from inhibition, there are also other dynamical feagwhich may
it with the results from the classical Boolean approach (Figure 5)influence the qualitative behavior of the automatically gatexl Boolean
The results from the two Boolean methods are similar and actuallynodel. In particular, depending on the actual implementatidhé database,
identical with respect to the temporal order of the responses to th@ simple phosphorylation may become an amplifying feedback. I6op

different interferences when allowing that two effects reported axample in our test case, phosphorylated MEK (a kinase) biadss

different times with one method may occur at the same time in

the other method. One exception is the short initial activatiofi-of
catenin forOA in CellNetAnalyzer which is due to the unstimulated
oscillation discussed earlier.

target ERK, phosphorylates it and dissociates. Once aetlygphospho-
MEK will continuously activate ERK as it is recycled. In bigy such
an amplification may of course happen, but its quantitativecefstrongly
depends on the kinetic parameters, in particular on how fassgho-MEK
is dephosphorylated and, hence, deactivated.

The observed temporal order is in line with the results from Kim For our examp|e network, we use an instantaneous deactivatio

et al.. With 3-catenin overexpressigftcatenin comes up first while

phospho-MEK after ERK activation. This is implemented by aetimg the

ERK activation shows a long delay. OA treatment shows fast ERKdissociation reaction to a new compound which cannot be usefiifther

response and a delay@dcatenin activation. SB has a similar effect

target activation.

as B-catenin overexpression while the combination SB+OA shows The method is implemented as follows: The second inhibitoragigm

the fastest effects of the two single interferences.

3 METHOD

The purpose of the proposed method is to model mechanisticiaeact
networks as provided by modern electronic database usinged Boolean
approach. The method is based on the previously publishedepbrof
scopes. Scopes have been developed for metabolic reactiwarke. It is

is dealt with by requiring all reaction inhibitors to be absédmittedly, this
is not the only Boolean function possible here. Howeverhasriclusion of
this type of inhibition is only a concession to the currentiadsituation and
the usage of this type is already very sparse in e.g. the Beactlatabase
we assume this to be a practical solution.

The first inhibition paradigm, the depletion inhibition, is reo
complicated. As mentioned, an additional Boolean variablati®duced
representing the depletion state of a compound. This varialset toTRUE
if at least one outgoing inhibitory reaction is active. Albrmrinhibitory
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present
depleted

:=(0,0,0,...)
:=(0,0,0,...)
timeseries :=()

Y
‘ ‘Call: step(present,depleted)‘ ‘

‘ i:=timeseries.length()-1 ‘

]
Ve

(<o)l

timeseries[i] == present)
2

(

timeseries.append(present) ‘

y

Fig. 6. General algorithm. "present” and "depleted” are arrays Wwhic
contain presence and depletion variables (1/0rfRUWE or FALSE) for each
compound. "timeseries” is an array containing the state foh ¢iane step.

reactions are only active if all of their substrates and ttalgst are available
and none of these is depleted. The algorithm is summarizedjuréis. The
implementation of a single iteration step is shown in Figure 7.

The algorithm also features depletion propagation. Thimgortant for
example if two forms of a protein can be considered in quasdgtstate, i.e.
they can be fast and reversibly converted into one anothdorlexample,
the second form is depleted then also the first form needs depleted and,
hence, inactivated even if form two is originally producednfi form one.
This information is included into the reaction convertingifioone into form
two by indicating that the depletion state of the productasged on to the
substrate.

A step by step walk-through of the algorithm on an example agktis
provided in the supplement, section S1. The method can bewefated as
a classical Boolean network by introducing further "vittuaodes. This is
discussed in the supplement, section S2.

As for models in general, initial conditions are importanttti®g only the
stimulants (i.e. Wnt and EGF in the test case)RUJE will not be sufficient.
In fact, there are a lot of proteins in signaling pathwayschitare present
either in their inactive or active forms. In that respect, tlve approaches
differ, as for our method inactive forms need to be initiallpyided (e.g.
unphosphorylated MEK must be present), while for the classipproach
the inactive forms are ignored. There is also a number of aftivies which
are assumed to be present in the beginning. Table 1 shows ittalyin
present nodes for the two Boolean approaches for discusset/MAPK
model.

In principle, the information on initial presence or acyvif compounds
depends on prior biological knowledge. However, for largetworks,
defining the initial conditions manually may be tedious. Asposed in
Handorfet al. (2008) reasonable sets of initial conditions can be interre
automatically from the network topology. For this method imtigalar the
above definedtatic mode will be important.

4 DISCUSSION

input present, depleted
A J

irea:= inhibiting reactions
prea:= propagating reactions
rea:= all reactions
deplete:=(0,0,0,...)
new:=(0,0,0,...)

i:=0

ireali]:
all substrates & catalyst
present?

deplete.set(inhibitedsubstrates(ireali])) ‘

i <irea.length() ?

4 U

\ =0 |
[

preali]:
all substrates & catalyst present
&& propagating product
depleted?

v y

i < prea.length() ?

‘ depleted:=deplete ‘
i-=0

deplete.set(inhibitedsubstrates(preali])) ‘

> =i+

Y

reali]:

all substrates & catalyst

present && !depleted
?

new.set(products) ‘

v y

i <rea.length() ? > Q=i

‘ present:=new ‘

1]

output present, depleted

Fig. 7. Module “step“: Calculate a single iteration. The algoritiiterates
over all inhibiting reaction (irea), propagating reactigorea) and all
reactions (rea). lterating over "irea” and "prea” createwmrray "deplete”
containing compounds which become depleted in the currept St#hen
iterating over all reactions products of active reactiores set in the new
array "new”. "new” and "depleted” are set to "present” andefdeted”
respectively. This ensures synchronous operation. Plezisehat the figure
over-simplifies the algorithm a bit. To be exact: When iteigtiver "irea”
and “"prea” depleted substrates are only allowed if they le€'inhibiting”
substrates. Further, in the loop over "rea” inhibiting it&ts can be active if
their inhibiting substrates are depleted and hence theuptedre activated.
This is the desired behavior.

the Boolean functions are implicitly defined. Kinetic properties of
the biological system, such as inhibitions or amplifications may
influence the system behavior but are not automatically included
when importing from these databases. This requires an additional
review of the model and may require further refinements.

In fact, one should refrain from perceiving Boolean networks
as purely topological. They contain indeed kinetic information as
they are generally inferred from the observed dynamical system
behavior, even if the exact kinetic parameters are not known and,
hence, are not part of the network definitions. However, kinetic
features will enter the Boolean network in terms of inhibitory or
activatory edges.

As discussed, inhibition in mechanistic reaction networks, as
available through the mentioned electronic databases, occurs

We proposed a new method for the automated generation of Booleaghrough competion of different reactions for the same substrate or
network models from curated mechanistic network databases. Hereatalysts. Depending on the kinetic parameters, one reaction may
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Table 1. Initial conditions mentioned phosphorylation/dephosphorylation cycles which are a
common motif in signaling networks, the one or the other step
is usually more important for the signal transduction. In case of

Scopes | CeliNetAnalyzer unspecific phosphatases it can be assumed that their regulation
occurs external to the pathway under investigation. Hence removing
P21 RAS:GDP MEK AXIN the dephosphorylation step will mostly yield the desired result.
ng G;‘f;:ta (?sprgs F_urthermore, the _function of the phosphatases e_specially in MAP
B-catenin CKlalphd  B-catenin klngs_e cascades_ is rathe_r not tp dea(_:tlvr_:lte pr_otelns but to keep the
APC Axinl TCE activity at a certain operation point which is optimal for the pathway
TCF GTP function. Clearly, this kind of model refinement cannot be done in
cRafpp:14-3-3 LRP an automated fashion.
Frizzled receptors ADP For future improvements of the automatic import of Boolean
unidentified protein kinase networks from databases, the curation of mechanistic databases
should become sensitive for the interplay of topology and kinetics.
Nodes initially set TRUE) in the Wnt/MAPK pathway for our approach The databases may indicate the kinetic mode a reaction usually
and in CellNetAnalyzer. These nodes will be h@IRUE during the operates in, e.g. when it is known that a reaction depletes the active

complete simulation. All other compounds are initigl4LSE but may

change during simulation. form of a compound this could be marked by a "inhibition” flag.

With the size of the network also the number of errors can
be expected to increase in the data. While our method assumes
correct network data in first place, this can be used to actually

deplete the substrate concentration significantly, thereby leading teerify the network information by comparing the simulation results
an inactivation of other reactions. If such inhibitions are observedo experimental results. With methods for model extension and
in a particular pathway, they can be added to the network in grediction of initial conditions (Handogt al., 2008; Christiaret al .,
subsequent functional curation step and considered by our prpos@009) which are based on the concept of scopes, deficits of those
Boolean method. networks may be identified and corrections can be proposed.

We tested our method on an example network describing the To summarize, the presented method facilitates usage of
crosstalk of the Wnt and MAPK pathways. This network model mechanistic electronic databases by defining large parts of the
contains several cases of the mentioned substrate depletion, faetwork logic from the topology. The difficulties of predicting
example the inhibition ofs-catenin by binding to the destruction the exact dynamical behavior of the biological system due to its
complex. We compared our method to the classical Boolearkinetic parameters has been discussed and possible means of model
approach as well as to the results of Ketal. (2007) who did a  refinement have been proposed. Hence, mechanistic databases and
differential equation model with experimental validation. automatic import of these has the potential to push the development

The two Boolean approaches show similar results, as expectedf Boolean network models of signaling and regulatory networks,
Also, the Boolean approaches could reproduce many featurealthough further review of the network data, in terms of a functional
shown by Kimet al.. In fact, the temporal order of the events curation, may be necessary.
was the same as in the more sophisticated differential equation
model. Quantitative effects like concentrations or the strength of the
feedback are of course beyond the scope of the Boolean appmaeh%\CKNOWLEDGEMENT
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