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ABSTRACT
Motivation: The understanding of the molecular sources for diseases
like cancer can be significantly improved by computational models.
Recently, Boolean networks have become very popular for modeling
signaling and regulatory networks. However, such models rely
on a set of Boolean functions which are in general not known.
Unfortunately, while detailed information on the molecular interactions
becomes available in large scale through electronic databases, the
information on the Boolean functions does not become available
simultaneously and has to be included manually into the models, if
at all known.
Results: We propose a new Boolean approach which can directly
utilize the mechanistic network information available through modern
databases. The Boolean function is implicitly defined by the reaction
mechanisms. Special care has been taken for the treatment of kinetic
features like inhibition. The method has been applied to a signaling
model combining the Wnt and MAPK pathway.
Availability: A sample C++ implementation of the proposed
method is available for Linux and compatible systems through
http://code.google.com/p/libscopes/wiki/Paper2011
Contact: handorf@physik.hu-berlin.de

1 INTRODUCTION
An important focus in Systems biology are emergent properties
of biological systems, properties which arise from the system as
a whole and which cannot be explained by looking at individual
components alone. A common theme in this evolving field are
biological networks which describe complex relations between
biological entities. Modeling these networks uncovers the systems
behavior as a whole based on the properties and interactions of the
contained compounds.

An important subset of such networks describes mechanistic
processes among biochemical species. Such processes play an
important role in cellular metabolism, signal transductions and gene
regulation. Computational models of these networks have been
investigated for a long time. A first category of models concentrate
on single pathways, i.e. functionally related parts of the networks,
with the use of differential equations (Rapoportet al., 1974; Rizzi
et al., 1997; Wolf and Heinrich, 2000; Teusinket al., 2000; Heinrich
et al., 2002; Schoeberlet al., 2002; Zi and Klipp, 2007; Kofahl and
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Wolf, 2010). Such models usually yield high quality predictions of
the system dynamics with quantitative information on the molecule
concentrations. Those models, however, require accurate kinetic
parameters.

The emergence of large scale electronic databases like KEGG
(Kanehisaet al., 2010), Reactome (Matthewset al., 2009) or the
Pathway Interaction Database (PID)(Schaeferet al., 2009) opened
new directions in modeling biological networks. For large models it
is often unfeasible to obtain all the necessary kinetic parameters. In
such cases so called structural methods are applied. These include
elementary flux modes (Schuster and Hilgetag, 1994; Schusteret al.,
2000), flux balance analysis (Bonariuset al., 1997; Edwards and
Palsson, 2000) and Petri nets (Reddyet al., 1996; Genrichet al.,
2001).

A further structural method which became very popular in
particular for signaling and gene-regulatory networks are Boolean
networks (Kauffman, 1969, 1986; de Jong, 2002; Handorfet al.,
2005; Fisher and Henzinger, 2007; Saez-Rodriguezet al., 2009;
Samagaet al., 2009). In a Boolean network, each compound is
represented by a network node and has an associated Boolean value.
This value either represents the existence of a compound, i.e. it is
TRUE if the compound is present in a significant concentration and
FALSE if not, or it represents the activity. In the network, nodes are
connected by edges which represent biochemical interactions. The
Boolean value of a node is calculated in each step of the algorithm
through a Boolean function which depends on the Boolean values
of all inbound nodes.

Usually, while the topology of the network is known (e.g. from
interaction databases or qualitative interaction studies), the Boolean
function is unclear. One approach is to estimate this function
by adapting the model to experimental data as shown in Saez-
Rodriguezet al. (2009). In Handorfet al. (2005) we introduced
a different Boolean approach for metabolic networks, the concept
of Scopes, which circumvents this problem. Here, a (metabolic)
reaction is active if all of its substrates are present (i.e.TRUE).
Subsequently all compounds becomeTRUE for which at least one
producing reaction is active. Hence, the Boolean function is clearly
defined by the topology and is represented by the conjunction
(AND) of all substrates of a reaction.

In signaling and gene-regulatory networks the situation is more
complex. In fact, there exist different views on these networks.
A phenomenological view (Figure 1a) represents experimental
findings, like A and C activate and B and D inactivate protein E. This
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Fig. 1. Different representations of signaling or regulatory processes: The
three views shall represent the same mechanistic process. a) network of
activating and inactivating proteins. b) intermediate representation with
reactions. c) fully mechanistic representation, the dottedinhibition arrows
represent additional markings which carry the information oninhibitions.
(*) denote active proteins and (I) inactivated proteins in b) and c). The
different views roughly equal the SBGN Activity Flow (a) andSBGN
Process Description (c) (Novreet al., 2009).

view, which is similar to the SBGN1 Activity Flow (Novre et al.,
2009), is used for classical Boolean models as indicated above and
requires a Boolean function which converts the states of the proteins
A to D into the state of protein E.

Clearly, there exist molecular mechanisms behind the experimental
observations which can be described by biochemical reactions. A
view which is particularly popular in differential equation models is
shown in Figure 1b where reactions have substrates and products as
in metabolic network but can also be influenced by a set of activators
or inhibitors.

However, this view is still not fully mechanistic. Reactions are
never directly activated or inhibited by a compound. The only agent
that effects the reaction rate is the catalyst. Other modifications are
indirect by influencing the activities of the substrates or the catalyst
(Figure 1c). Within this fully mechanistic view, which is similar to
the SBGN Process Description, the Boolean function is again clear:
Its a conjunction (AND) of all substrates and the catalyst.

This type of mechanistic network information can be retrieved
from modern databases like Reactome or PID. With the present
method we are able to automatically create a functional Boolean
network model including the Boolean function for signaling or
gene-regulatory pathways.

Simulation of the resulting Boolean model allows to explore
potential qualitative behavior of the network upon stimulation.
Obviously, such a Boolean network cannot reproduce behavior
which results from the kinetics of the participating biochemical

1 Systems Biology Graphical Notation

reactions. This holds in particular for inhibition which in the fully
mechanistic view is only indirectly included (inhibition occurs due
to competition for the same substrate, see methods).

This is in contrast to manually built classical Boolean networks
which are derived from experimental observations and therefore
naturally include inhibitory effects. By including phenomenological
data, the classical Boolean networks are actually not purely
topological anymore. Including an inhibitory interaction already
assumes that the compound concentrations or the kinetic properties
of the participating reactions are in certain suitable ranges. The
fully mechanistic view however does not contain implicit kinetic
information. Hence, this type of information has to be added to the
automatically created network as discussed in the methods section.

The proposed Boolean approach has been applied to a signaling
and gene-regulatory network describing the interaction between
the Wnt pathway and the MAP kinase cascade. The targets of
the two pathways,β-catenin and ERK, are known initiators for
differentiation and proliferation and are also of great interest in
diseases like cancer. In Kimet al. (2007) a model of these two
interacting pathways has been published. It includes crosstalk at the
signaling and gene-regulatory level.

Our model could reproduce their findings. We also manually
implemented a classical Boolean network using CellNetAnalyzer
(Klamt et al., 2007) and compared it to our model.

2 APPROACH
We implemented the network model of crosstalk between the Wnt
and MAPK pathways presented in Kimet al. (2007), as shown in
Figure 2. To this end, we imported the reactions from the Reactome
database (see supplemental section S4). The imported network was
further refined to match the model of Kimet al. as not all utilized
reactions are in the database, yet. It should be noted that this is not
a mandatory step in general. The method described here is able to
directly use the data from the database if the contained information
already sufficiently describes the analyzed system.

Furthermore, kinetic features of the system, like inhibition, have
been identified and included into the model as described in the
method section.

In the refined model, the crosstalk between the WNT and MAPK
pathways is represented through, first, an unknown protein X
which is transcribed in response to the transcription factorβ-
catenin and which activates cRaf upstream of ERK, second, an
inhibition of GSK3β by active ERK which in turn inhibits the
destruction complex ofβ-catenin in the Wnt pathway and third, a
direct stimulation of RAS by the Wnt signal. The known inhibitory
interactions in the pathways were incorporated as mentioned before.
The supplemental Figure S6 shows the complete network.

In order to compare the result of our scopes method to the result of
the classical Boolean approach, we manually built an activity flow
model of the participating species. This model (shown in Figure 3)
is much less complex than the model created from the databases
since it omits many mechanistic details and requires the manual
definition of the network logic. Model simulations were performed
using synchronous Boolean simulation in the ”odefy” module of
CellNetAnalyzer.

In a first step we investigated the effect of the Wnt stimulus on the
two target proteins ERK andβ-catenin for the MAPK and the Wnt
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Fig. 2. Crosstalk of the Wnt and Erk pathways. Modified from Kimet al.. Crosstalk is represented through, first, an unknown protein X which is transcribed
in response to the transcription factorβ-catenin and which activates cRaf upstream of ERK, second, an inhibition of GSK3β by active ERK which in turn
inhibits the destruction complex ofβ-catenin in the Wnt pathway and third, a direct stimulation of RAS by the Wnt signal.

pathway. Figure 4 shows similar behavior for our method and the
classical Boolean approach as provided by CellNetAnalyzer. Before
the Wnt stimulus is applied the system is usually assumed to be off
in the absence of crosstalk. The positive feedback loop introduced
with the crosstalk, however, leads to a periodic activity of the two
target proteins in both models. Once the Wnt stimulus is applied,
both, ERK andβ-catenin become continuously active. If the Wnt
stimulus is removed (not shown for CellNetAnalyzer) both proteins
stay active which is again due to the positive feedback loop.

We performed an attractor analysis for both models which yielded
results consistent with the above observations. Please see section S3
in the supplement for further details.

Kim et al. reported similar results using a model of differential
equations. The effect of the feedback loop is actually dependent
on the kinetic parameters and in particular on whether the signal
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Fig. 3. Activity flow diagram of the Wnt and MAPK pathway and their
crosstalk. The Boolean functions have been defined manually in order to
reproduce the known behavior of the components. Logical operators have
been indicated in the Figure if they were not clear from the topology alone.
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Fig. 4. Response ofβ-catenin and ERK to WNT stimulus: (upper) results
for the scope method; (lower) results for CellNetAnalyzer. Here, time
denotes the step number of the Boolean simulation which is an abstract time
which can roughly considered as a monotonous function of the real time

through the crosstalk is strong enough for sustained activation. For a
standard parameter set they reported that the activity stayed in a low
state without the stimulus, switched to active with the stimulus and
returned to the low state after the removal of the stimulus. However,
by varying the synthesis rate ofβ-catenin or the phosphatase activity
for ERK, the system showed an increased activity already before
the stimulus and a sustained activity after stimulus removal. This
parameter dependent distinction cannot be made with the Boolean
approaches.

At that point it should be noted that the oscillations in the off-
state observed in the Boolean systems are artifacts of the Boolean
formalism. In fact, in a differential equation model they would
not correspond to a stable limit cycle. It is a mere expression
of that an initial activation in the cycle is passed around without
being attenuated or amplified. Differential equation models could
show oscillations of this type transiently, in particular if the initial
activation time is shorter than the round-trip time.
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Fig. 5. Response ofβ-catenin (left) and ERK (right) to the different
interferences (β-catenin overexpression (+β-cat), ERK-phosphatase
inhibition with okadaic acid (OA), GSK-3β inhibition with SB216763 (SB)
and both (SB+OA)). The (upper) graph shows the results for the scope
method, the (lower) for CellNetAnalyzer. The different curves have been
shifted slightly to avoid overlap.

Kim et al. argued that the activating potential of the reported
feedback loop may be important in particular in cancer, indicating
that a slight variation of the kinetic rates may result in a
persistent activation of the proliferation related Wnt and MAPK
pathways even in the absences of the corresponding stimuli. They
further examined their model by a set of interference experiments
which they experimentally validated. First,β-catenin has been
overexpressed (+β-cat), second, active ERK levels have been
increased by phosphatase inhibition using okadaic acid (OA), third,
GSK3β has been inhibited by SB216763 (SB), and fourth, the
effect of ERK activation and GSK3β inhibition has been studied
in combination (SB+OA).

We repeated the experiments using our method and compared
it with the results from the classical Boolean approach (Figure 5).
The results from the two Boolean methods are similar and actually
identical with respect to the temporal order of the responses to the
different interferences when allowing that two effects reported at
different times with one method may occur at the same time in
the other method. One exception is the short initial activation ofβ-
catenin forOA in CellNetAnalyzer which is due to the unstimulated
oscillation discussed earlier.

The observed temporal order is in line with the results from Kim
et al.. With β-catenin overexpressionβ-catenin comes up first while
ERK activation shows a long delay. OA treatment shows fast ERK
response and a delayedβ-catenin activation. SB has a similar effect
asβ-catenin overexpression while the combination SB+OA shows
the fastest effects of the two single interferences.

3 METHOD
The purpose of the proposed method is to model mechanistic reaction
networks as provided by modern electronic database using a novel Boolean
approach. The method is based on the previously published concept of
scopes. Scopes have been developed for metabolic reaction networks. It is

a step-wise algorithm. Initially a set of seed compounds is defined which
is the set of initially available compounds. In each following step all active
reactions are determined by testing whether all substrates of an reaction are
available. Then, all products of the active reactions are added to the set of
available compounds. This process yields a set of compounds (the scope)
that are synthesizable from the seed compounds.

Here we adapt the concept to signaling networks. The challenge is to
include the effects of catalysts, activators and inhibitors. As discussed
before, in the fully mechanistic view, towards which modern databases
evolve, actually only catalysts remain. This can be includedin the method
by simply requiring the availability of all substrates and the catalyst for the
execution of a reaction. We call this thestatic mode of our method which is
equivalent to the previously defined Scopes.

Clearly, in signaling and gene-regulatory networks, dynamical effects,
and in particular inhibition, are especially important for the cellular functions
of these networks. As argued before, in the fully mechanisticview, inhibition
is indirect. It occurs due to reactions where an inhibitor catalyzes a
modification of a compound, thereby leading to a depletion of the active
form of the compound. To distinguish inhibiting reactions from other non-
inhibiting reactions which use the same compound as substrate, an inhibitory
flag has to be set to mark that the reaction is inhibitory to a specific substrate.

As an example we consider the reactionA∗ +B∗
→ AIB∗ from Figure

1c which depletesA∗ and thereby inactivates it. This effect is described
by an ”inhibition flag” to these reactions which is visualized by tee-shaped
arrows in Figures 1c and S6(supplement). This flag essentially describes
kinetic information. It means that for example in case of Michaelis-Menten
kinetics theKm-value is sufficiently low and theV max-value is high
enough to cause a low enough concentration ofA∗ such that other reactions
depending onA∗ are not significantly activated.

For thedynamic mode of the method this flag is used to include inhibitory
effects into the Boolean network approach. Therefore, we assign to each
compound node two Boolean variables, one indicating the presence of
the compound (as in the classical approach) and the second indicating its
depletion.

We further support the second paradigm of inhibition, the direct inhibition
of a reaction by an inhibitor (cf. Figure 1b). Although databases like
Reactome encourage their curators to use the fully mechanistic view, if
known, this paradigm will still be around for the next time. The activity
flow scheme (cf. Figure 1a) is not supported as this is perfectly covered by
classic Boolean approaches.

Apart from inhibition, there are also other dynamical features which may
influence the qualitative behavior of the automatically generated Boolean
model. In particular, depending on the actual implementation in the database,
a simple phosphorylation may become an amplifying feedback loop. For
example in our test case, phosphorylated MEK (a kinase) bindsto its
target ERK, phosphorylates it and dissociates. Once activated, phospho-
MEK will continuously activate ERK as it is recycled. In biology such
an amplification may of course happen, but its quantitative effect strongly
depends on the kinetic parameters, in particular on how fast phospho-MEK
is dephosphorylated and, hence, deactivated.

For our example network, we use an instantaneous deactivation of
phospho-MEK after ERK activation. This is implemented by connecting the
dissociation reaction to a new compound which cannot be used for further
target activation.

The method is implemented as follows: The second inhibitory paradigm
is dealt with by requiring all reaction inhibitors to be absent. Admittedly, this
is not the only Boolean function possible here. However, as the inclusion of
this type of inhibition is only a concession to the current data situation and
the usage of this type is already very sparse in e.g. the Reactome database
we assume this to be a practical solution.

The first inhibition paradigm, the depletion inhibition, is more
complicated. As mentioned, an additional Boolean variable isintroduced
representing the depletion state of a compound. This variable is set toTRUE
if at least one outgoing inhibitory reaction is active. All non-inhibitory
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Fig. 6. General algorithm. ”present” and ”depleted” are arrays which
contain presence and depletion variables (1/0 forTRUE or FALSE) for each
compound. ”timeseries” is an array containing the state for each time step.

reactions are only active if all of their substrates and the catalyst are available
and none of these is depleted. The algorithm is summarized in Figure 6. The
implementation of a single iteration step is shown in Figure 7.

The algorithm also features depletion propagation. This isimportant for
example if two forms of a protein can be considered in quasi steady state, i.e.
they can be fast and reversibly converted into one another. If, for example,
the second form is depleted then also the first form needs to bedepleted and,
hence, inactivated even if form two is originally produced from form one.
This information is included into the reaction converting form one into form
two by indicating that the depletion state of the product is passed on to the
substrate.

A step by step walk-through of the algorithm on an example network is
provided in the supplement, section S1. The method can be reformulated as
a classical Boolean network by introducing further ”virtual” nodes. This is
discussed in the supplement, section S2.

As for models in general, initial conditions are important. Setting only the
stimulants (i.e. Wnt and EGF in the test case) toTRUE will not be sufficient.
In fact, there are a lot of proteins in signaling pathways which are present
either in their inactive or active forms. In that respect, thetwo approaches
differ, as for our method inactive forms need to be initially provided (e.g.
unphosphorylated MEK must be present), while for the classical approach
the inactive forms are ignored. There is also a number of activeforms which
are assumed to be present in the beginning. Table 1 shows the initially
present nodes for the two Boolean approaches for discussed WNT/MAPK
model.

In principle, the information on initial presence or activity of compounds
depends on prior biological knowledge. However, for largernetworks,
defining the initial conditions manually may be tedious. As proposed in
Handorf et al. (2008) reasonable sets of initial conditions can be inferred
automatically from the network topology. For this method in particular the
above definedstatic mode will be important.

4 DISCUSSION
We proposed a new method for the automated generation of Boolean
network models from curated mechanistic network databases. Here,
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Fig. 7. Module “step“: Calculate a single iteration. The algorithmiterates
over all inhibiting reaction (irea), propagating reaction(prea) and all
reactions (rea). Iterating over ”irea” and ”prea” create a new array ”deplete”
containing compounds which become depleted in the current step. When
iterating over all reactions products of active reactions are set in the new
array ”new”. ”new” and ”depleted” are set to ”present” and ”depleted”
respectively. This ensures synchronous operation. Pleasenote that the figure
over-simplifies the algorithm a bit. To be exact: When iterating over ”irea”
and ”prea” depleted substrates are only allowed if they are the ”inhibiting”
substrates. Further, in the loop over ”rea” inhibiting reactions can be active if
their inhibiting substrates are depleted and hence the products are activated.
This is the desired behavior.

the Boolean functions are implicitly defined. Kinetic properties of
the biological system, such as inhibitions or amplifications may
influence the system behavior but are not automatically included
when importing from these databases. This requires an additional
review of the model and may require further refinements.

In fact, one should refrain from perceiving Boolean networks
as purely topological. They contain indeed kinetic information as
they are generally inferred from the observed dynamical system
behavior, even if the exact kinetic parameters are not known and,
hence, are not part of the network definitions. However, kinetic
features will enter the Boolean network in terms of inhibitory or
activatory edges.

As discussed, inhibition in mechanistic reaction networks, as
available through the mentioned electronic databases, occurs
through competion of different reactions for the same substrate or
catalysts. Depending on the kinetic parameters, one reaction may
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Table 1. Initial conditions

Scopes CellNetAnalyzer

p21 RAS:GDP MEK AXIN
ATP Gsk3beta APC
DSH PP2A GSK3

β-catenin CK1alpha β-catenin
APC Axin1 TCF
TCF GTP

cRafpp:14-3-3 LRP
Frizzled receptors ADP

unidentified protein kinase

Nodes initially set (TRUE) in the Wnt/MAPK pathway for our approach
and in CellNetAnalyzer. These nodes will be heldTRUE during the
complete simulation. All other compounds are initiallyFALSE but may
change during simulation.

deplete the substrate concentration significantly, thereby leading to
an inactivation of other reactions. If such inhibitions are observed
in a particular pathway, they can be added to the network in a
subsequent functional curation step and considered by our proposed
Boolean method.

We tested our method on an example network describing the
crosstalk of the Wnt and MAPK pathways. This network model
contains several cases of the mentioned substrate depletion, for
example the inhibition ofβ-catenin by binding to the destruction
complex. We compared our method to the classical Boolean
approach as well as to the results of Kimet al. (2007) who did a
differential equation model with experimental validation.

The two Boolean approaches show similar results, as expected.
Also, the Boolean approaches could reproduce many features
shown by Kim et al.. In fact, the temporal order of the events
was the same as in the more sophisticated differential equation
model. Quantitative effects like concentrations or the strength of the
feedback are of course beyond the scope of the Boolean approaches.

Clearly, the main advantage of the proposed method over
the classical approach is the straight forward model definition
using curated reaction network databases. This gain is even more
important in the context of the fast growing amount of interactions
available through these databases. In fact, while it was possible to
create the Boolean logic of our sample network by hand, such a
task will be tedious when talking about databases containing several
thousand reactions.

Still, our method comes with a number of drawbacks which
are common to all Boolean approaches. Concentrations and
interaction strengths cannot be fully covered byTRUE andFALSE
values. The usage of two Boolean variables per compound,
i.e. inactive, active and activated but depleted allows us to
model some concentration dependent kinetic effects like indirect
inhibition by depletion. However, the general problem of the very
crude representation of reality remains. For example antagonistic
effects like phosphorylation and dephosphorylation will lead to
intermediate compound activity which has to be mapped to either
TRUE or FALSE in a biologically meaningful way.

Treatment of such effects is, however, still possible in Boolean
approaches by choosing the right network wiring. For the above

mentioned phosphorylation/dephosphorylation cycles which are a
common motif in signaling networks, the one or the other step
is usually more important for the signal transduction. In case of
unspecific phosphatases it can be assumed that their regulation
occurs external to the pathway under investigation. Hence removing
the dephosphorylation step will mostly yield the desired result.
Furthermore, the function of the phosphatases especially in MAP
kinase cascades is rather not to deactivate proteins but to keep the
activity at a certain operation point which is optimal for the pathway
function. Clearly, this kind of model refinement cannot be done in
an automated fashion.

For future improvements of the automatic import of Boolean
networks from databases, the curation of mechanistic databases
should become sensitive for the interplay of topology and kinetics.
The databases may indicate the kinetic mode a reaction usually
operates in, e.g. when it is known that a reaction depletes the active
form of a compound this could be marked by a ”inhibition” flag.

With the size of the network also the number of errors can
be expected to increase in the data. While our method assumes
correct network data in first place, this can be used to actually
verify the network information by comparing the simulation results
to experimental results. With methods for model extension and
prediction of initial conditions (Handorfet al., 2008; Christianet al.,
2009) which are based on the concept of scopes, deficits of those
networks may be identified and corrections can be proposed.

To summarize, the presented method facilitates usage of
mechanistic electronic databases by defining large parts of the
network logic from the topology. The difficulties of predicting
the exact dynamical behavior of the biological system due to its
kinetic parameters has been discussed and possible means of model
refinement have been proposed. Hence, mechanistic databases and
automatic import of these has the potential to push the development
of Boolean network models of signaling and regulatory networks,
although further review of the network data, in terms of a functional
curation, may be necessary.
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